Paolo Creminelli, ICTP Trieste

Galilean symmetry in the EFT of inflation: new shapes of NG

with G. D'Amico, J. Noreña, M. Musso, E. Trincherini, 1011.3004 (JCAP)

Galilean symmetry

Shift symmetry on the gradient of a scalar

$$
\phi \rightarrow \phi+b_{\mu} x^{\mu}+c
$$

-What happens if I impose this on the inflaton?

- In particular can I get new shapes wrt $\dot{\pi}^{3}$ and $\dot{\pi}(\nabla \pi)^{2}$?
- Neat example of the EFT of inflation

Lowest order

Lowest derivative galileons give $2^{\text {nd }}$ order eom

$$
\mathcal{L} \sim(\partial \phi)^{2}\left(\partial^{2} \phi\right)^{n}, \quad n \leq 3 \quad \longrightarrow \quad\left(\partial^{2} \phi\right)^{n+1}
$$

Use these operators for inflaton Lagrangian

Non-Gaussianity given by cubic operators with 4 derivatives:

$$
\ddot{\pi} \dot{\pi}^{2}, \quad \dot{\pi}^{2} \nabla^{2} \pi, \quad \dot{\pi} \nabla \dot{\pi} \nabla \pi, \ddot{\pi}(\nabla \pi)^{2}, \quad \nabla^{2} \pi(\nabla \pi)^{2}
$$

.... but using

$$
\ddot{\pi}+3 H \dot{\pi}-c_{s}^{2} \nabla^{2} \pi / a^{2}=0
$$

all these operators are equivalent to the ones with 3 derivatives!

Non renormalization

The leading G. operators $\mathcal{L} \sim(\partial \phi)^{2}\left(\partial^{2} \phi\right)^{n}, \quad n \leq 3$ are not renormalized

Consistent to set them to zero

We consider operators with two derivatives on each field $\left(\partial^{2} \phi\right)^{n}$

WAIT! But now the EOM are of higher order! Ghosts!??!

No, we are going to impose the symmetry on the EFT of inflation and treat higher derivative terms perturbatively

It is the theory of small perturbations around an inflating background

$$
\text { We probe } \quad \phi_{0}(t+\pi(t, \vec{x})) \quad H \pi=-\zeta \simeq 10^{-5} \text { and } \mathrm{E} \sim \mathrm{H}
$$

Usually the regime of validity extends to much larger values of π

We are interested in

$$
M_{\mathrm{Pl}}^{2} \dot{H}(\partial \pi)^{2}+M\left(\partial^{2} \pi\right)^{3}+\ldots
$$

Say with cubic term to be of order $\sim 10^{-3}$ wrt the kinetic one. Higher derivative terms are small and are (as usual) treated perturbatively

The theory will break down for large $\mathrm{H} \pi$! In particular $\pi \sim \mathrm{t}$ is not within the EFT

The action

Useful to introduce a "fake" scalar which linearly realizes Lorentz symmetry

$$
\psi(t, \vec{x}) \equiv t+\pi(t, \vec{x})
$$

$$
\text { Building block: } \quad \nabla_{\mu} \nabla_{\nu} \psi \equiv \Psi
$$

Build operators at a given order in π in terms of products of

$$
[\Psi \Psi \ldots \Psi] \ldots[\Psi \Psi \ldots \Psi]
$$

- Identify tadpoles

Projectors are not Galilean!

- Geometrical constructions does not help
- Mixing with gravity is subleading in slow-roll

The cubic action

Final action has only 3 independent cubic operators:

$$
\begin{array}{r}
S=\int \mathrm{d}^{4} x a^{3}\left[-M_{\mathrm{Pl}}^{2} \dot{H}\left(\dot{\pi}^{2}-\frac{\left(\partial_{i} \pi\right)^{2}}{a^{2}}\right)+M_{1} \ddot{\pi}^{3}+M_{2} \ddot{\pi} \frac{\left(\partial_{i} \dot{\pi}-H \partial_{i} \pi\right)^{2}}{a^{2}}\right. \\
\left.+M_{3}\left(\ddot{\pi} \frac{\left(\partial_{i} \partial_{j} \pi\right)^{2}}{a^{4}}-2 H \dot{\pi} \ddot{\pi}^{2}+3 H^{3} \dot{\pi}^{3}\right)\right]
\end{array}
$$

Constraints on parameters

Using the analysis of Smith etal. 10 and WMAP7, we can put constraints on M_{i}

Choose equilateral template for M_{1} and $\mathrm{M}_{2}: f_{N L}^{\mathrm{eq}} \equiv \frac{k^{6}}{6 \Delta_{\Phi}^{2}} B(k, k, k)$

$$
f_{\mathrm{NL}}^{\mathrm{eq}}=26 \pm 140(68 \% \mathrm{CL}) \quad \longrightarrow \quad \frac{M_{1} H}{\varepsilon M_{\mathrm{Pl}}^{2}}=240 \pm 1280 \frac{M_{2} H}{\varepsilon M_{\mathrm{Pl}}^{2}}=-80 \pm 470
$$

For M_{3} we can use enfolded template $(\cos =0.94): f_{N L}^{\mathrm{enf}} \equiv \frac{k^{6}}{96 \Delta_{\Phi}^{2}} B(k, k / 2, k / 2)$

$$
f_{\mathrm{NL}}^{\mathrm{enf}}=114 \pm 72(68 \% \mathrm{CL}) \quad \longrightarrow \quad \frac{M_{3} H}{\varepsilon M_{\mathrm{Pl}}^{2}}=830 \pm 530
$$

New shapes: orthogonal to orthogonal

Orthogonal shape is found by tuning coefficients requiring small cosines with local and equilateral

Can we extend the space of shapes with our new operators? YES

Template	Cosine
Local	-0.15
Equilateral	0.03
Orthogonal	0.06
Enfolded	-0.03

Look where Icosl < 0.2
Intersection point at
$\mathrm{M}_{2}=0.32 \mathrm{M}_{1}, \mathrm{M}_{3}=-0.42 \mathrm{M}_{1}$
This would require a dedicated template...

4-point function

Standard EFT: $\quad \mathcal{L}_{1-\partial}=\left(\partial \pi_{c}\right)^{2}+\frac{1}{\Lambda^{2}}\left(\partial \pi_{c}\right)^{3}+\frac{1}{\Lambda^{4}}\left(\partial \pi_{c}\right)^{4}+\ldots$

$$
\begin{aligned}
\left.\mathrm{NG}_{3} \equiv \frac{\left\langle\zeta^{3}\right\rangle}{\left\langle\zeta^{2}\right\rangle^{3 / 2}} \simeq \frac{\mathcal{L}_{3}}{\mathcal{L}_{2}}\right|_{E \sim H} \simeq & \left.\left(\frac{H}{\Lambda}\right)^{2} \quad \mathrm{NG}_{4} \equiv \frac{\left\langle\zeta^{4}\right\rangle}{\left\langle\zeta^{2}\right\rangle^{2}} \simeq \frac{\mathcal{L}_{4}}{\mathcal{L}_{2}}\right|_{E \sim H} \simeq\left(\frac{H}{\Lambda}\right)^{4} \\
& \Longrightarrow \mathrm{NG}_{4} \sim \mathrm{NG}_{3}^{2}
\end{aligned}
$$

Non-minimal galilean action: $\quad \mathcal{L}=\left(\partial \pi_{c}\right)^{2}+\frac{1}{\Lambda^{2}}\left(\partial^{2} \pi_{c}\right)^{2}+\frac{1}{\Lambda^{5}}\left(\partial^{2} \pi_{c}\right)^{3}+\frac{1}{\Lambda^{8}}\left(\partial^{2} \pi_{c}\right)^{4}+\ldots$

$$
\begin{aligned}
& \mathrm{NG}_{3} \simeq\left(\frac{H}{\Lambda}\right)^{5} \mathrm{NG}_{4} \simeq\left(\frac{H}{\Lambda}\right)^{8} \\
& \Longrightarrow \mathrm{NG}_{4} \sim \mathrm{NG}_{3}^{8 / 5}
\end{aligned}
$$

For a given cubic NG our model predicts a larger 4 pt function

$$
f_{\mathrm{NL}}=100 \text { implies } \tau_{\mathrm{NL}} \sim 10^{4} \text { vs. } \tau_{\mathrm{NL}} \sim 10^{5}
$$

Possible to impose an approximate $\pi->-\pi$ symmetry to make 4 pf dominant

Conclusions

- Galilean symmetry is one of the few symmetry we can impose
- Do not assume very different backgrounds are within the validity of EFT
- New (technically natural) shapes of the 3pf
- Potentially large 4-point function

Shapes of non Gaussianities

